
1.  Introduction
The Madden-Julian Oscillation (MJO) is well recognized as a source of potential predictability on subseasonal to 
seasonal timescales. This has motivated broad interests in understanding the MJO, particularly the mechanisms 
of its propagation, its variability and predictability. Several studies have examined how known modes of climate 
variability such as seasonality, El-Niño Southern Oscillation (ENSO), Quasi-Biennial Oscillation (QBO) and the 
Indian Ocean Dipole (IOD) affect the propagation of the MJO. In general, about half of MJO events weaken as 
they cross the Indo-Pacific Maritime Continent (MC) region and MJO events are twice more likely to weaken 
during El Niño years compared to La Niña years (Burleyson et al., 2018; Kerns & Chen, 2016). Recently, Hagos 
et al. (2019) showed that this variability of MJO propagation and strength is related to a slow eastward migration 
of zonal moisture flux convergence between the Asian and Australian monsoon convergence centers from boreal 
summer to winter and its modulation by ENSO. Strengths of individual MJO events change as they propagate 
across this zonally and seasonally varying monsoonal moisture convergence as well as the passage of a previous 
MJO event (Moum et al., 2016). The impacts of QBO on the MJO has also been a subject of recent interest (e.g., 
Liu et al., 2014; Marshall et al., 2017; Martin et al., 2021; Nishimoto & Yoden, 2017; Son et al., 2017; Yoo & 
Son, 2016; Zhang & Zhang, 2018). MJO activities in boreal winter are found to be stronger in easterly than 
westerly phases of QBO. The influence of the Indian Ocean Dipole (IOD) on the development and propagation 
was examined by Wilson et al. (2013) who showed that MJO events over the Indian Ocean and MC region are 
stronger during negative phases of IOD (warm surface in the western tropical Indian Ocean) and weaker during 
positive phases (warm surface in the eastern tropical Indian Ocean). The authors attributed this sensitivity to the 
modulation of local low-level moisture over the eastern Indian Ocean by sea surface temperature (SST).

Abstract  A Markovian stochastic model is developed for studying the propagation of the Madden-Julian 
Oscillation (MJO). This model represents the daily changes in real time multivariate MJO (RMM) indices as 
random functions of their current state and background conditions. The probability distribution function of the 
RMM changes is obtained using a machine learning algorithm trained to maximize MJO forecast skills using 
observed daily indices of RMM and different modes of variability. Skillful forecasts are obtained for lead times 
between 8 and 27 days. Large ensemble simulations by the stochastic model show that with monsoonal changes 
in the background state, MJO propagation across the Maritime Continent (MC) is most likely to be disrupted 
in boreal spring and summer when MJO events propagate from favorable conditions over the Indian Ocean to 
unfavorable ones over the MC, and predictability is higher during spring and summer when MJO activity is 
away from the MC region.

Plain Language Summary  The work demonstrates the application of machine learning in the 
development of reduced dimension stochastic models that can efficiently run and analyzed. As a simple form 
of such models a Markov model of Madden-Julian Oscillation (MJO) propagation is presented. The model is 
trained to maximize MJO forecast skill using 40 years of observations of MJO and the background, seasonal, 
El-Niño Southern Oscillation, Quasi-Biennial Oscillation and Indian Ocean Dipole state. The application of the 
model to the problem of MJO disruption over the maritime continent region and in the study of predictability 
using analysis of signal-to-noise ratio is discussed. The work highlights that, in addition to direct analysis of 
observations and numerical simulations, observationally trained reduced dimension models could be valuable 
tools of research in climate variability and multi-scale interactions.
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These significant progress in understanding the influences of various modes of climate variability on the MJO 
have been made using composite analyses. However, composite analyses allow direct examinations of neither the 
impact of these modes of variability on individual MJO events nor the potential role of non-linear processes in 
the combined effects of multiple modes. In a complementary approach using physics-based models of various 
degrees of complexity, environmental conditions such as SSTs, upper-level wind, or insolation etc. (e.g., Back 
et al., 2020; Hagos et al., 2020) are modified to determine the impact of the phenomenon of interest on a case 
study basis. Such an approach assumes the model adequately represents MJO propagation and its relationship to 
the background state. Sufficient computational resources are needed to run many ensembles for more systematic 
analysis. Ensemble modeling is particularly important in predictability research where robust calculations of the 
signal-to-noise ratio are critical.

For robust and efficient examinations of the variability and predictability of MJO propagation, we propose a third 
approach through the development and application of reduced dimension stochastic models of MJO propagation 
trained by observations. As a demonstration of such an approach, we present a simple Markovian model trained 
by 40 years of daily indices of the climate state including the seasonal cycle, ENSO, QBO and IOD. The model 
development is described in the next section. Applications of the model to understand MJO disruption and pre-
dictability are elaborated in Section 3. Discussions are given in Section 4.

2.  Model
We aim at developing a stochastic model of MJO propagation that is easy to train, run, analyze, and interpret. As 
a first step, a concise way of representing the MJO and the background state is sought. To this end we define a 
vector S whose elements include the indices of the states of the MJO and the background on a given day t. In this 
model the six-dimensional vector S is composed of the two real time multivariate MJO indices (RMMs), solar 
declination angle (SDA in radians) as well as ENSO, QBO and IOD indices. These sources and references for the 
indices are provided in Table S1 in the Supporting Information S1.

�� = [RMM1,RMM2, SDA,ENSO,QBO, IOD]� (1)

A two-dimensional matrix function P  is defined as the probability that changes in the state of the MJO from day 
t  to day 𝐴𝐴 𝐴𝐴 + 1 defined as 𝐴𝐴 ΔRMM1 and 𝐴𝐴 ΔRMM2 fall within one of 10 pre-defined bins drmm1 and drmm2. that is,

� (ΔRMM1 = drmm1|��,ΔRMM2 = drmm2|� �) = � (� �)� (2)

where f is the transition function to be obtained from observations using machine learning. An important point to 
note is that Equation 2 represents a Markovian model, which is the simplest form in the general class of stochastic 
models (Gagniuc, 2017; Wilks, 1995), that is, the change in 𝐴𝐴 𝑺𝑺 𝑡𝑡 is assumed to depend only on its previous state 

𝐴𝐴 𝑺𝑺 𝑡𝑡−1 . The distribution of the daily changes in RMM1 and RMM2 from their 40 years of data between 1980 and 
2019 is shown in Figure S1a in the Supporting Information S1. Part of the distribution that falls between −0.5 and 
0.5 are partitioned into 10 bins such that each drmm1 and drmm2 bin has a width of 0.1. Values of drmm1 and 
drmm2 outside the range of −0.5 and 0.5 on 4% of the days are excluded to reduce the effect of small sampling on 
the training by requiring at least 500 days of training data for each bin. This limits the applicability of the model to 
this range of drmm1, drmm2. The (i,j) element of the 10 × 2 dimensional matrix P represents the probability that 
the change in 𝐴𝐴 ΔRMM1 and 𝐴𝐴 ΔRMM2 falls within the ith drmm1 bin and the jth drmm2 bin. The machine learning 
algorithm and the training process are described in some detail in the Supporting Information S1.

The model advances forward in time as follows. At a given time t, based on the initial and background state (S(t)), 
the optimized function f(S) provides P from which the actual forecasts of 𝐴𝐴 (drmm1(𝑡𝑡), drmm2(𝑡𝑡) are randomly 
drawn. Then 𝐴𝐴 rmm1(𝑡𝑡 + 1) = rmm1(𝑡𝑡) + drmm1(𝑡𝑡) and 𝐴𝐴 rmm2(𝑡𝑡 + 1) = rmm2(𝑡𝑡) + drmm2(𝑡𝑡). A large independ-
ent ensemble of such optimizations is performed in parallel to limit the possibility of the training being trapped 
in a local minimum. To some extent the model developed here bears some resemblance to the Markov model of 
Jones (2009) who used a nine-state first-order Markov chain in which state 0 represents quiescent days and states 
1–8 are the active phases of the MJO to estimate the transition probabilities based on the historical record of MJO 
events. The model proposed in the current study is more general in that it aims to predict the changes in the RMM 
index and therefore both amplitude and phase of the MJO are predicted using information of the variability of the 
states of the background as well as the MJO.
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3.  Results
Once the model is optimized, the variations of its forecast skill with a given initial amplitude and an initial phase 
as well as background conditions (i.e., seasonal cycle and the phases of the various interannual modes of varia-
bility) are examined. For each initial and background states of interest, simulations of a 20-member ensemble are 
performed. As in the training stage the forecasts are initialized on days when the RMM amplitude is greater than 
1.0. Figure 1 summarizes the variation of the skill, defined as BVCORR, with initial amplitudes, initial phases, 
seasons as well as ENSO, QBO and IOD phases. The skill is found to be most sensitive to the initial MJO am-
plitude and to seasonality, especially during the first 10 days. Measured by BVCORR > 0.5, skillful predictions 
can be obtained with lead times as long as 27 days for the strongest 20% of MJO events and as short as 9 days 
for the weakest 20% of MJO events. Higher skills are found in boreal winter (up to 24 days in December) than in 

Figure 1.  The BVCORR calculated from 20 ensemble member forecasts with various initial and boundary conditions. For 
the El-Niño Southern Oscillation, Quasi-Biennial Oscillation phases and Indian Ocean Dipole phases the five quintiles of 
their respective indices are used to define strong, weak, and neutral cases.
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summer (12 days in August). As measured by the difference in lead time at which BVCORR crosses the 0.5 line, 
the variability in the skill associated with initial phase, ENSO, QBO and IOD is relatively smaller.

The model is used to examine the propagation characteristics of hypothetical MJO events initialized at various 
phases during different months. Figure 2 shows the seasonality of propagation of MJO events of the same initial 
amplitude of 

√

2 but in different initial phases (phase 1 in Africa to phase 4 in MC) and initialized on different 
months (colors). All other indices are set to neutral. As part of the monsoonal transitions, from late summer to fall 
and winter, moisture convergence and associated convective activity propagate eastward from the Asian monsoon 
to the MC and the Australian monsoon longitudes. In contrast, from the end of boreal winter to spring and early 
summer, moisture convergence and convective activity propagate westward toward the Indian Ocean longitudes. 
In other words, in spring and summer, the Indian Ocean sector is favorable for convective activity while the Aus-
tralian and MC regions are not, but in fall and winter the favorable environment shifts eastward (and southward) 
and the conditions are reversed. In Hagos et al. (2019) it was shown that the seasonal variability of MJO strength 
reflects this monsoonal variability. Specifically, during boreal spring and summer much of the MJO activities are 
in phases 2 and 3, that is, over the Indian Ocean, and during fall and winter they are in phases 4 and 5, that is, over 
the MC region. This has important implications for the role of initial conditions. For example, MJO events initial-
ized in phases 2 and 3 (Figures 2b and 2c) in the middle of spring and summer months (green) are more likely to 
weaken as they would be propagating toward an unfavorable environment compared to MJO events initialized at 

Figure 2.  The averages of RMM diagrams of 100 member simulations of propagation of hypothetical Madden Julian 
Oscillation events initialized at (a) phase 1, (b) phase 2, (c) phase 3 and (d) phase 4 on the middle (15th day) of the month.
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the same phase but in winter (red), as the latter events would propagate into 
a favorable environment. Sensitivity tests indicate this behavior shows little 
sensitivity to the other aspects of the climate state (the other indices).

The simplicity of the stochastic model allows many simulations to be gener-
ated for quantitatively assessing the seasonality of likelihood of disruption to 
MJO propagation. To that end we define propagating and disrupted events as 
follows. An MJO event is defined as propagating if on any day within 30 days 
of initialization it has an amplitude >1.0 in phase 6 (Western Pacific), other-
wise it is defined as disrupted (by the MC). As a demonstration of this defini-
tion, RMM phase diagram of a 10-member ensemble simulation initialized at 
phase 1 is shown in Figure 3a. Three events (in red) meet the criteria for our 
definition of disrupted events. Similar simulations are performed with 1,000 
ensemble members initialized at different seasons and phases so that the frac-
tion of the ensemble members that are disrupted is defined as the probability 
of disruption. Figure 3b shows the dependence of this probability of disrup-
tion on the initial phase and the month of initialization. As can be expected 
from the seasonal zonal migration of convective activity between the Indian 
Ocean and MC region discussed above, MJO events entering the MC region 
in spring and summer are most likely to be disrupted as they are moving from 
a favorable to an unfavorable environment. Hence MJO events initialized in 
spring and summer (green) during phases 3 and 4 have higher probability of 
disruption relative to MJO events initialized in winter (red and blue) during 
the same phases 3 and 4 (Figure 3b). The higher chance of disruption remains 
the case even if the MJO events are still strong in phase 4.

Finally, the predictability of MJO amplitude is examined using large ensem-
ble simulations by the stochastic model. Signal-to-noise ratio is defined as 
the ratio of the mean to the standard deviation of the ensemble for MJO am-
plitude. Figure 4 shows the variability of this signal-to-noise ratio with sea-
son of initialization (color), initial phase (panels a–h) and lead time (x-axis). 
Signal-to-noise ratio shows significant seasonality and dependence on initial 
phase with larger values in spring and summer. Furthermore, signal-to-noise 
ratio is enhanced when the active phase MJO events is away from the MC 
region such as within 15 days of initial phase 7 (Figure 4g), within 10 days of 
initial phase 8 (Figure 4h) etc.

4.  Discussion
Much of our understanding of MJO propagation and variability is obtained 
from composite analysis, numerical model simulations and theoretical analy-

ses. Each of these approaches has its own strengths and weaknesses. We introduce another approach that exploits 
the use of machine learning to build stochastic models trained to capture natural variability of the earth system us-
ing long-term observations. The first and key advantage of this approach relative to linear models is the machine 
learning piece in which the form of the non-linear function F(s) is determined by the observational data. The 
second advantage is that the stochasticity arises from the observation itself rather than imposed using arbitrary 
distribution. Thus, natural variability of the system is included which makes such models useful for predictability 
studies. Such stochastic models can produce a large number of ensemble members for robust statistics. In this 
work as a first version of stochastic models for demonstration, a Markovian model is developed and trained to 
maximize MJO forecast skill using 40 years of daily observation of indices of RMM, seasonality, ENSO, QBO 
and IOD. The variability of forecast skills with the initial and background states is documented. Specifically, the 
lead time of skillful forecasts varies between 8 and 27 days, primarily depending on the initial amplitude of the 
RMM index. Specifically, skillful predictions can be obtained with lead times as long as 27 days for the strongest 
20% of MJO events and as short as 9 days for the weakest 20% of MJO events. The skill also shows seasonal-
ity with higher skills in boreal winter (up to 24 days in December) than in summer (12 days in August). The 

Figure 3.  (a) A 10-member ensemble simulation of a hypothetical Madden 
Julian Oscillation (MJO) event. Events are considered disrupted if they don't 
an amplitude greater than 1.0 in phase six within 30 days of initialization. (b) 
The probability of disruption of hypothetical MJO events initiated at various 
phases and various months calculated from simulations of 1,000 member 
ensembles.
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variability in the skill associated with initial phase, ENSO, QBO and IOD are relatively smaller. This is in con-
trast to the strong sensitivity of forecast skill of an numerical model to QBO phase reported by Lim et al. (2019).

As the model is computationally economic to run, large ensembles of simulations are used to examine the prob-
ability of MJO propagation being disrupted that may vary with the background state and initial phase. Because 
the background state favorable for convection migrates zonally with seasons, MJO events propagating across the 
MC region are most likely to be disrupted in boreal spring and summer when they propagate from a favorable 
environment over the Indian Ocean to an unfavorable one over the MC. Analysis of signal-to-noise ratio indicates 
potentially better predictability during spring and summer especially when MJO activities are away from the MC 
region. While the model has obvious room for improvement and generalization, such as introducing longer-term 
memory and additional indices representing the state of the extratropical atmosphere and ocean etc., this work 

Figure 4.  Signal-to-noise ratio calculated from 1,000 ensemble member simulations initialized at the eight RMM phases.
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represents a promising demonstration of potential futures of machine learning approach. A more general class of 
reduced dimension models can complement existing approaches to addressing the MJO and other climate varia-
bility and predictability problems.

Data Availability Statement
Daily time series of the RMM index are available at http://www.bom.gov.au/climate/mjo/graphics/rmm.74to-
Realtime.txt, accessed on 13 January 2016. The ENSO index data sets are available at https://origin.cpc.ncep.
noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php. The QBO index data are at https://www.cpc.
ncep.noaa.gov/data/indices/qbo.u50.index. The IOD index data is available at https://psl.noaa.gov/gcos_wgsp/
Timeseries/Data/dmi.had.long.data.
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